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Automata with memory on proximity graphs
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Abstract. In proximity graphs to every pair of nodes it is assigned a certain
vicinity, and the pair is connected if its vicinity is empty. In the automata studied
here each node is characterized by a binary state and their updating is made
according to a rule involving the neighborhood of each node. The effect of different
types and degrees of memory of the past states embedded in nodes is assessed
when considering a particularly active rule, namely the parity rule.
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1. Automata on proximity graphs

Given a set P of N nodes in the plane, in proximity graphs to every pair of
nodes is assigned a certain neighbourhood, and the pair is connected if its
neighbourhood is empty. Two kinds of proximity graphs will be considered in
this study : β-skeletons and Delaunay triangulations.

In β-skeletons [6] the β-neighborhood is defined as : the intersection of
two circles of radius d(p, q)/2β that pass through p and q, if β ∈ [0, 1] ; the
intersection of two circles of radius βd(p, q)/2 centered at the points (1 −
β/2)p+(β/2)q and (β/2)p+(1−β/2)q, if β ≥ 1 . If β varies continuously from
0 to ∞, β-skeletons form a sequence of graphs extending from the complete
graph to the (nearly) empty graph, i.e., with decreasing mean degree.

A Delaunay triangulation for a set P is a triangulation DT(P) such that
no node in P is inside the circumcircle of any triangle in DT(P)[4].

In the automata on proximity graphs studied here, each node i is charac-
terized by a binary state σi ∈ {0, 1} . The updating of these states is made
simultaneously in discrete time-steps (T ), according to a common local tran-
sition rule (φ) involving only the neighborhood of each node Ni . Thus, the
site values evolve by iteration of the mapping : σ

(T+1)
i = φ

(
{σ(T )

j } ∈ Ni

)
.

This article deals with the parity rule : σ
(T+1)
i =

∑

j∈Ni

σ
(T )
j mod 2 . De-

spite its formal simplicity, the parity rule may exhibit complex behaviour [5].

2. Memory

In the Markovian approach just outlined, the transition depends on the config-
uration of the nodes only at the preceding time-step. Explicit historic memory
can be embedded in the dynamics keeping φ unaltered, by featuring every node
by a mapping of its states in the past 1. Thus, σ

(T+1)
i = φ

(
{s(T )

j } ∈ Nj

)
, s

(T )
j

being a trait state function of the series of states of the node j up to T [2] .
In the particular case of the parity rule : σ

(T+1)
i =

∑

j∈Ni

s
(T )
j mod 2 .

We will consider in the present study two kind of memories : The most
frequent state (or majority), and decaying weighted memory.

With majority memory limited to the last τ time-steps :

s
(T )
i = mode

(
σ

(T )
i , σ

(T−1)
i , . . . , σ

(>)
i

)
,

1A kind of memory-enrichment of the feed-back which is readily implementable in any
discrete iterative system [1].
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with > = max(1, T−τ +1) . In the case of equality in the number of time-steps
that a node was 0 and 1, the last state is kept, in which case memory does
not really actuate. This lack of effect of memory induces a lower effectiveness
of even size τ -memories.

Historic memory can be weighted by applying a geometric decaying mech-
anism based on a memory factor α ∈ [0, 1] . Thus, the trait state s of every
node is the rounded weighted mean (m) of its previous states. Formally :

m
(T )
i =

σ
(T )
i +

T−1∑

t=1

αT−tσ
(t)
i

1 +
T−1∑

t=1

αT−t

→ s
(T )
i =





1 if m
(T )
i > 0.5

σ
(T )
i if m

(T )
i = 0.5

0 if m
(T )
i < 0.5 .

The choice α simulates the remnant memory effect: the limit case α = 1
corresponds to full memory (equivalent to unlimited trailing majority mem-
ory), whereas α ¿ 1 intensifies the contribution of the most recent states
(short-term memory). If σ ∈ {0, 1}, α-memory is effective only with α > 0.5 .

3. Results

In order to assess the effect of memory, the evolution of the changing rate
(the relative Hamming distance between two consecutive patterns) and of the
damage rate (the relative Hamming distance between patterns resulting from
reversing the initial state of a single node) are shown in the long-term (average
of the last five iteration rates) in Figs.1 and 2 .

Both changing and damage rates reach a 0.5 level in the conventional
ahistoric model. Memory exerts an inertial effect which induces the depletion
of both parameters. The depleting effect of memory is much more remarkable
in skeletons with low connectivity, e.g., β=2.0 (Relative Neighborhood Graph),
whereas skeletons with high connectivity, e.g., β=0.9, are hardly restrained
with memory. Skeletons with connectivity so to say in the middle range,
e.g., β=1.0 (Gabriel graph), are affected by memory somehow in between the
extreme scenarios.

Memory notably restrains the changing rate, albeit turns out rather inef-
fective in the control of the damage in networks with high connectivity, i.e.,
β-skeletons with low β such as β=0.9 . In a simulation up to T time-steps, the
maximum depleting effect of majority memory on the changing rate (Fig.1
left) is achieved with a memory length τ ' T/2 . With very high memory
length, the initial oscillatory-like effect induced by majority memory in the
changing rate is maintained too long to allow an effective depletion in the
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Figure 1: Long-term changing rate (left) and damage (right) in ten N=1000
parity β-skeletons with τ -majority memory run up to T=100 .

changing rate. That is so even in low-connected networks, i.e., skeletons with
large β .

Weighted memory (Fig. 2) shows a smoother effect, with increasing effec-
tiveness according to the increase of the memory factor α . Thus, increasing
the memory factor implies restrain in the changing rate in the left panel of
Fig. 2, though very weakly when low memory charge is implemented. The
sharp peak in the full memory (α=1.0) scenario agrees with the increase ob-
served with full length (τ=100) majority memory in Fig. 1 . The restrain of
damage is achieved only with a memory factor greater than 0.7 .

Figure 2: Long-term changing rate (left) and damage (right) in ten N=1000
parity β-skeletons with α-memory run up to T=100 .

In large DT the mean connectivity turns out to be K=6 . Consequently,
the effect of memory on the parity rule on DT is comparable to that on β-
skeletons with high connectivity. The evolving dynamics of the changing rate
and damage in parity DT automata are in fact reminiscent of that on the
β=0.9 skeletons shown in Figs.1 and 2 . In particular, memory turns out rather
ineffective in the control of damage on DT. Considering the triangles of a DT
as cells, connected if they are adjacent, the scenario would be that of irregular
(triangular) cellular automata. These triangular DT cellular automata will
have mean degree equal to three, a low connectivity which allows for a higher
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effectiveness of memory in restraining the changing rate and damage spreading,
much as in the β=2.0 skeletons shown in Figs.1 and 2 .
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