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A measure of sustainable efficiency in networks
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Abstract. Complex systems of interactions of different areas can be modelled
by complex networks where elements are represented by nodes and the interac-
tions by links. The architecture or topology of those networks reflect (specially
when considering undirected and unweightened networks) fundamental properties
of the modelled systems. In this work we analyse three main characteristics of
the behaviour of these systems: its operational capacity or performance, its effi-
ciency with respect to resources and its vulnerability. Some results of the defined
sustainable efficiency measure are presented.
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1. Introduction

Many relevant properties of complex systems (such as communication or infor-
mation systems) can be described in terms of network structural or topological
properties. There is an extensive literature on network performance and net-
work efficiency where direct as well as long range interactions are taken into
account. One of the most widely accepted definitions of network efficiency is
given by Latora and Marchiori in [1]. The L-M global efficiency of a network
G with n nodes is defined by:

EfL−M (G) =
1

n (n− 1)

∑

i 6=j∈G

1
dij

(1)

where dij denotes the topological-geodesic distance between nodes i and j,
that is, the minimum lenght of a path joining i and j (dij = ∞ if there is no
path joining them), so less distant connections are more valuable than more
distant ones. Note that 0 ≤ EfL−M (G) ≤ 1 is a normalized measure where its
maximum value is reached for the complete graph Kn on n nodes. In this sense,
the Latora-Marchiori global efficiency is expressed as a percentage of network
performance,

∑
i6=j∈G

1
dij

, of what ideally could be expected, n (n− 1), in a
complete graph as ideal case.

Since for a given number of nodes, the performance -and therefore the
L-M efficiency- of the network increases with the number of edges, the need of
introducing a cost evaluator function related with the number of edges arises
(see [2] where the concept of economic small-world is introduced). However,
as it is stated in [2], ‘the target principles of construction also have to take
into account the fact that resources are not unlimited’.

Vulnerability measures the stability and robustness of the global perfor-
mance of the network under external perturbations (random or targeted fail-
ures or attacks). When vulnerability is defined as the relative drop in the
global efficiency EfL−M (G), (as in [3]), a negative value of vulnerability can
appear (see [4]-[5]).

These considerations motivate the model presented in this work. First we
define the operational capacity of a network as a measure of its performance
in terms of the distribution distances of the network. Vulnerability is then
defined as the relative drop in the operational capacity after the failure of
a part of the network. Considering the restriction of limmited resources, a
sustainable efficiency measure is define as the ratio of the operational capacity
by a resources function instead of a cost function.
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2. Operational capacity, distance distribution and vulnerability

The operational capacity is a measure of the network performance based in
the structure or topology of the network by the connections of the graph. For
a network G = (V, E) with |V | = n nodes and |E| = m edges, we define its
operational capacity by:

OC (G) =
∑

i6=j∈G

1
dij

(2)

Thus, 0 ≤ OC (G) ≤ n (n− 1), and the maximum value is obtained for the
complete network Kn.

Let G be a connected network with diameter d and let i a node of G. Let
xik be the number of nodes at distance k from i. The distance degree sequence
of node i is ~xi = (xi1 , xi2 , ...xid), where xik is the number of nodes j 6= i in G
at distance k of i. Thus xi1 = deg (i) is its degree, xik = 0 for k > ε (i) the
eccentricity of node i, and

∑d
k=1 xik = n− 1.

Let Dk be the number of pairs of nodes at distance k from one another in
a G. The distance distribution of G is given by:

~D (G) = (D1, D2, ..., Dd) =
1
2

n∑

i=1

~xi

Thus, for a connected network G with diameter d its operational capacity is
determined by its distance distribution:

OC (G) = 2
d∑

k=1

Dk

k
(3)

which allows to give the following bounds for OC (G) in terms of the diameter
d, the number of nodes n and the number of links m:

• d = 1, G = Kn and OC (G) = n (n− 1)

• d = 2, OC (G) = m + n(n−1)
2

• d = n− 1, OC (G) = 2
∑n−1

k=1
n−k

k

• 2 < d < n− 1,

OC (G) ≤ m +
n (n− 1)

2
− d (d + 1)

2
+ 3 + 2

d∑

k=3

(
d + 1

k

)

OC (G) ≥ 2m +
n (n− 1)

d
− 2m

d
− 3d + 5 +

2
d

+ 2
d−1∑

k=2

d + 1
k
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The vulnerability quantifies the network’s security and stability under the
effects of failures or targeted attacks. We define it as the relative fall of
operational capacity, and therefore is a normalized non negative measure.

• Node vulnerability

V (G, i) =
OC (G)−OC (Gr {i})

OC (G)

• Average vulnerability

V (G) =
1
n

∑

i∈G

V (G, i)

• Maximum vulnerability

Vmax(G) = max
i∈G

V (G, i)

3. Sustainable efficiency

For any network on n nodes, its operational capacity increases with the num-
ber of edges. In the case of a complete network Kn, the ratio between its
operational capacity and its number of edges is constant equal 2. However, for
a star network Stn this ratio increases with n by n

2 + 1 . Taking into account
the fact that resources are not unlimited, we define a resources function of a
network G with n nodes and m edges by:

R (G) = m
(n

2
+ 1

)
(4)

The sustainable efficiency of a network G is defined as the ratio of its
operational capacity per the amount of the resources used.

EfS (G) =
OC(G)
R (G)

=

∑n
i=1

(∑
j 6=i

1
dij

)

1
2m (n + 2)

(5)

Note that 0 ≤ EfS (G) ≤ 1, where EfS (G) = 0 iff there is no edge and
EfS (G) = 1 iff G = Stn. Thus, in this model, best sustainable efficiency
is realized in star-like configurations, which agree with results obtained by
other authors (see [6]-[7]). However, the star configurations have the highest
vulnerability for targeted attacks, reflecting the fact that both requierements
(efficiency with respect to resources and robustness) are conflicting demands.

One of the main results of the given sustainable efficiency measure is
presented in the following theorem, which states that sustainable efficiency
improves generally with connectivity, although the increase of the resources
value.



178 A measure of sustainable efficiency in networks

Figure 1: Ratio of the maximum operational capacity (right) and minimum
operational capacity (left) by the resources function for a network G with
n = 100 nodes and diameter 3 ≤ d ≤ 98.

Theorem 3..1 Let G1 = (V1, E1) and G2 = (V2, E2) be connected graphs with
n1 and n2 nodes respectively. Let G = G1 ∪G2 the disjoint union. Then there
exists u ∈ G1 and v ∈ G2 such that adding an edge α = (u, v) in G, the
resulting connected network G′ = G1∪αG2 verifies EfS (G′) > EfS (G).
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